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Abstract: Image captioning aims to automatically describe the visual content of a given image 1

with fluent and reasonable sentences, which combines both computer vision (CV) and natural 2

language processing (NLP). By leveraging region features, grid features or relative direction between 3

objects, transformer-based models have achieved impressive and promising performance. However, 4

existing approaches for image captioning only integrate some of the three types of information 5

mentioned above and thus are arduous to obtain satisfactory results. In this paper, we propose a novel 6

Fusion Transformer (FT) network to fuse both region and grid visual features considering directional 7

relationships between objects. Such approach enhances the orientation perception between visual 8

features and can also capture both the high-level and fine-grained details in the image. Specifically, in 9

encoder, a modified multi-head attention is proposed to integrate the relative direction information 10

between objects based on the original attention mechanism. It plays an important role in mining 11

intrinsic spatial and contextual relationships between visual features with the fusion of relative 12

direction encoding. We express both kinds of visual features as region-level and grid-level visual 13

modalities, and word representations as the language modality. To use the complementary advantages 14

of both region and grid features, we apply a Fusion Attention (FA) module to integrate these two 15

types of visual features with word representations. This module performs attention over the target 16

visual modality (grid or region) by the guidance of previous modality (region or grid). In FA, a 17

Language Guidance Block (LGB) is employed to perform preliminary attention by infusing processed 18

word features with each kind of previous visual modality, in order to make multiple modalities fully 19

integrated. Further, the representations of the preliminary attention affect the target visual modality 20

to obtain the integrated information. Moreover, to control the flow of integrated information, we 21

apply a Fusion Gate Operation (FGO) module to do further fusion for visual and language modalities. 22

The extensive experimental results on MS-COCO dataset show that our proposed Fusion Transformer 23

performs competitively on various evaluation metrics, especially the CIDEr score reaches 133.4%. 24

(And the CIDEr score reaches 134.7% in the further improvement of Fusion Transformer.) 25

Keywords: image captioning; Fusion Transformer; relative direction; region features; grid features 26

1. Introduction 27

Image captioning is a vital task at the intersection of computer vision and natural 28

language processing, which generates a descriptive statement automatically for an input 29

image by precisely understanding the scene meaning. More than simply recognizing the 30

entity objects, image captioning has to master the spatial relations between objects. To 31

generate reasonable and fluent sentences that match visual semantics, image captioning 32

also has to bridge the gap between visual modality and language modality. 33

Inspired by the Seq2Seq [1] type tasks in machine translation, Vinyals et al. [2] trans- 34

ferred the basic encoder-decoder architecture [3] to image captioning simply. Subsequently, 35

most image captioning methods follow this classical framework. In previous image caption- 36

ing methods [2,4,5], the encoder generally utilizes a Convolutional Neural Network (CNN) 37

to extract global features of images, while the decoder applies Recurrent Neural Network 38

(RNN) to generate captions corresponding to the input images. Recently, to enhance the 39
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accuracy and consistency of encoder-decoder based frameworks for image captioning, 40

the attention mechanism is exploited to assign different weights to different part of the 41

inputs. Among these attention-based encoder-decoder architectures, the proposal of the 42

Transformer [6] represents a milestone especially for its multi-head attention. More than 43

relating different positions of a single sequence, multi-head attention in Transformer is also 44

adept at capturing relationships between different modalities. 45

Most existing Transformer-based architectures utilize three sources of features to en- 46

hance captioning performance, which refers to region features, grid features and spatial 47

relations between objects. Since region-based features extracted by Faster R-CNN [7] 48

are first utilized in image captioning [4], a flurry of methods [8–10] adopt region fea- 49

tures as input for providing high-level individual object information. Region features 50

are accomplished in recognizing salient regions, which obviously indicates their lack of 51

obtaining fine-grained detailed information in images. However, grid features like vanilla 52

grid convolutional feature maps [11,12] are widely utilized for their contextual detailed 53

information. Since a novel method in [13] is proposed to extract grid features for image 54

captioning, a few models [14] are established to advance the performance by feeding 55

grid features as input. Recently DLCT [16] is proposed to realize the integration of both 56

region and grid features by leveraging a dual-way encoder. Naturally, in this paper, we 57

also apply an encoder utilizing both visual features as input according to their comple- 58

mentary nature. Though transformer-based methods achieve outstanding performances in 59

capturing relations between objects, the spatial relations (e.g., relative positional relations, 60

absolute positional relations and relative directional relations) are still indispensable for 61

image captioning. Inspired by the previous methods adding only positional information 62

[8,17] or only directional information [18], we propose a novel method containing both 63

positional and directional information to describe more accurate relations between objects. 64

In this paper, we propose a novel modified multi-head attention in encoder to fuse 65

both region and grid information with additional relative directional encoding. To explore 66

relations between region features, grid features and word representations, we introduce 67

a Fusion Attention (FA) module to extend the initial cross-attention in the decoder part 68

of Transformer. Further, to address the noises caused by direct fusion of two visual 69

representations (region and grid), Language Guidance Block (LGB) in FA is proposed to 70

integrate representations concluding two visual information indirectly. Concretely, LGB 71

utilizes word attention from the decoder as a guidance to attend to the prior region features 72

(or grid features). Then the result of LGB considered as a previous representation attends to 73

the target grid features (or region features) and subsequently the value of target attention 74

is obtained. It should be noticed that the value of another target modality attention is 75

calculated the same way as the grid one. Ultimately, we employ a Fusion Gate Operation 76

(FGO) module to further integrate two kinds of target attention computed by FA. This 77

realizes the fusion of multiple types of information in an interlaced way involving region 78

information, grid information and language information. As described, the final output of 79

FGO will be propagated to the next Feed Forward Network (FFN) layer in decoder. 80

To integrate multiple types of information, DLCT [16] computes representations of 81

multimodal information separately in encoder and concatenates them before feeding to 82

decoder. Different from DLCT, we fuse the two types of visual features (region and grid) 83

guided by text information in the decoder part, rather than computing the cross-attention 84

value of region and grid information in encoder part. Moreover, we integrate various infor- 85

mation in an interlaced way instead of mixing two single modal representations directly. 86

And the worthy merits of FA in Fusion Transformer are that the word representations 87

have chances to guide each kind of visual information directly and the previous fusion 88

attention with one kind of visual modality can affect the target visual modality. Compared 89

with another method in [17], we have low input requirements for encoder, which is a 90

more practical way instead of extracting semantic attributes from the attribute detector as 91

additional inputs. 92

The contributions of this paper can be summarized as follows: 93
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1. A modified Multi-Head Self-Attention is proposed to capture relationship between 94

visual features with directional relations. It extends the original positional encoding 95

vector by fusing the relative directional encoding between objects. 96

2. A Fusion Attention (FA) is introduced to explore the relations between region features, 97

grid features and word embeddings in an interlaced way. FA also extends the initial 98

cross-attention in transformer-decoder. 99

3. A Fusion Gate Operation (FGO) module is infused to control the further propagation 100

of region attention and grid attention. 101

Figure 1. The overview of our proposed Fusion Transformer (FT) architecture. We propose a
novel Fusion Transformer which creatively fuses region information, grid information and word
representations with additional directional encoding. Notice that the word "W" in the figure refers to
word representations.

2. Related Work 102

2.1. Encoder-decoder in Image Captioning 103

As the pioneering work of the encoder-decoder structure in image captioning, the 104

Neural Image Caption Generator [2] replaces the RNN with a CNN-based InceptionNet to 105

extract image features, and then applies LSTM-based sentence generator as the decoder 106

to generate captions. Most methods [5,9,19] in image captioning are typically based on 107

the encoder-decoder framework. Earlier works [5,20] make full use of grid-based features 108

which contain contexual information. Recently, Jiang et al. [13] propose a novel method 109

which extracts fixed-size patches as grid features from Faster R-CNN [7]. Since then, 110

this method has been widely utilized in recent models. However, grid-based features 111

have drawbacks in grasping salient characteristics of high-level objects. The proposal of 112

region features by Anderson et al. [4] addresses the limitation of grid features. Recent 113

approaches [8–10,21] in image captioning demonstrate the superiority of region features 114

as well. In spite of these advances, few works study the complementary merits of encoding 115

multimodal visual features including grid visual features and region visual features. 116

2.2. Attention Mechanism 117

The concept of attention mechanism is first proposed to mimic the human pattern of 118

visual attention. Bahdanau et al. [22] first propose the attention mechanism formally. Later, 119
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Xu et al. [5] introduce the Soft Attention and Hard Attention in image captioning tasks 120

for the first time, making the model more efficient by only focusing on the source domain 121

information that is most relevant to the target task each time. Ahmed et al. [23] propose 122

a novel network structure called Transformer which contains the multi-head attention 123

mechanism. Earlier methods [4,5,20,24,25] employ attention mechanism to explore the 124

relations between monomodal information. Recently, few methods [16,26,27] are emerging 125

to combine multiple types of information. In this paper, we apply the Transformer structure 126

to integrate multiple types of information by the Fusion Attention in decoder part. Rather 127

than performing attentions over the few modalities separately and later integrating the 128

individual attention representations in [16], our FA succeeds in grasping fusion nature 129

between each kind of visual information and word representations by the guidance of 130

language information. 131

2.3. Positional and Directional Information 132

Although the migration of the original Transformer from machine translation to image 133

captioning can gain huge improvement, the initial positional encoding does not apply to 134

2-D images. The relations between objects in 2-D space cannot be accurately calculated only 135

by absolute positions like the sequence of token representations in sentences. This obvious 136

defect motivates recent approaches [8,9,16,18] to fuse positional information or directional 137

information, attempting to achieve comprehensively better performances. Herdade et al. 138

[8] propose an Object Relation Transformer which modifies the attention weights by fusing 139

relative geometric information between two features. Guo et al. [9] introduce a Geometry- 140

aware Self-attention which adds a bias calculating the attention over two objects with their 141

relative position information. Luo et al. [16] integrate the absolute position information for 142

the first time. Song et al. [18] devise a high-level relative directional category to judge the 143

directional relations between objects, which aims to fuse directional information. However, 144

these methods failed to fuse directional information with positional information in a simple 145

vector representation. 146

3. Proposed Methodology 147

We propose our Fusion Transformer which is illustrated in Figure 1. We first introduce 148

the standard Transformer structure for image captioning in section 3.1. Then in section 3.2, 149

we devise a modified multi-head attention to fuse region and grid features with directional 150

information. In addition, the two visual features fed to encoder are processed into highly 151

abstract representations in section 3.3. In section 3.4, a Fusion Attention is devised to 152

integrate two visual representations and mono language information in an interlaced 153

way. Finally, we continue to integrate the fusion information, in order to generate the 154

comprehensive captions in section 3.5. 155

3.1. Standard Transformer Architecture 156

The Transformer architecture in [6] eschews recurrence and relies entirely on attention 157

mechanisms to draw global dependencies between the input and the output. Transformer is 158

composed of a stack of N identical layers for both encoder and decoder. Each encoder layer 159

consists of a multi-head attention sub-layer followed by a Feed Forward Network (FFN) 160

sub-layer, while each decoder layer consists of two multi-head attention sub-layers also 161

followed by a FFN. Moreover, residual connections and layer normalization are employed 162

around all sub-layers to reduce the vanishing gradient phenomenon. In image captioning 163

with Transformer, region-based features extracted by object detector are fed to encoder 164

as input and the decoder generates caption words by utilizing previous words and the 165

decoder generates caption words by utilizing previous words and the intermediate visual 166

representations from encoder. 167

Given N input image feature vectors x1, x2, ..., xN , where xi denotes the i-th feature
vector. These image features are first input into an embedding layer of the encoder and
converted to vectors of dimension dmodel . The embedded feature vectors are subsequently
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fed to encoder. Each encoder layer contains a multi-head attention sub-layer which has h
identical heads. Each head of multi-head attention is a scaled dot-product self-attention
which calculates queries Q ∈ RN×dk , keys K ∈ RN×dk and values V ∈ RN×dk as follows:

Q = XWQ, K = XWK , V = XWV , (1)

where X ∈ RN×dmodel denotes the matrix which is stacked by input image feature vectors
x1...xN and WQ, WK , WV are all dmodel × dk dimensional learned projection matrices. Then,
the similarity score matrix E ∈ RN×N between any keys K and all queries Q is computed
as:

E =
QKT
√

dk
, (2)

where the element Emn represents the similarity between the m-th image feature xm and
the n-th image feature xn (m, n = 1...N). The output of the scaled dot-product attention
head is a weighted sum of values, which is formulated as:

head(X) = attention(Q, K, V) = so f tmax(
QKT
√

dk
)V . (3)

Equations 1 to 3 are calculated for a single head of the multi-head self-attention
mechanism. Furthermore, the output of multi-head attention is formulated as:

multi−head(Q, K, V) = Concat(head1, ..., headh)WO, (4)

where headi denotes the i-th (i = 1, 2, ..., h) head of the multi-head attention mechanism. 168

For convenience, here we denote the result of multi − head(Q, K, V) as X ′. 169

Finally, a position-wise FFN is connected with the multi-head attention, which contains
two linear transformations with a ReLU activation in between [6]:

FFN(X ′) = ReLU(X ′W1 + b1)W2 + b2. (5)

Further, the output of visual representations from encoder will be fed to a multi-head 170

attention sub-layer in decoder for producing the next word of a caption. 171

3.2. Positional and Directional information Integrating 172

The initial positional encoding for machine translation in Transformer retains the 173

relative position information of tokens, which is not applicable to images. Previous meth- 174

ods either exploit positional information or modify the attention mechanism only in a 175

directional manner. Nevertheless, we devise a relative spatial encoding method which 176

combines relative positional information with relative directional encoding. 177

3.2.1. Relative Directional Encoding 178

The relative direction between objects can crucially guide the model to generate de- 179

scriptive sentences which are more consistent with human orientation cognition. Therefore, 180

a set of standard direction vectors are artificially settled to do similarity calculation with 181

the real visual orientation vectors obtained from region pairs or grid pairs. 182

Concretely, on planar 2-D coordinates, we first define a system of 4d standard direction 183

vectors shown in Figure 2, where d denotes the number of divided sub-quadrant regions 184

in each quadrant. Each vector with an arrow pointing from the center of the coordinate 185

represents a normal direction. 186

In this system, every standard direction vector ui ∈ R2 can be formulated as:

ui = (cos(
iπ
2d

), sin(
iπ
2d

)), (6)
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Figure 2. Examples of standard direction vectors for d = 1, 2, 3. Notice that if k = 0, it means without
using relative directional information in the model.

where there are 4d normal direction vectors u0, u1, ..., u4d−1. Notice that the embedding 187

of ui is a randomly initialized parameter which can be optimized during training like the 188

word embedding in natural language processing. 189

Given N image features as well and their corresponding bounding boxes (or grid
boxes) are represented as Bi (i = 1, 2, ..., N). For regions, the relative direction between
the m-th region box Bm and the n-th region box Bn can be measured as vmn by the center
coordinates of their bounding boxes, and the euclidean distance [28] between them is
calculated as:

vmn = (
xm − xn√

(xm − xn)2 + (ym − yn)2
,

ym − yn√
(xm − xn)2 + (ym − yn)2

), (7)

where (xm, ym) and (xn, yn) denote the center coordinates of the region boxes Bm and Bn,
respectively. Finally, the relative directional scalar smn is represented by the cosine similarity
of vmn and ui, which is as follows:

smn = arg max
i

vmn · ui
∥vmn∥ · ∥ui∥

. (8)

For grids, (xi, yi) can also be noted as the center coordinates for the i-th (i = 1, 2, ..., N) 190

grid box. 191

3.2.2. Relative spatial Encoding 192

Among region features, the relative locations and directions for bounding boxes play 193

important roles in grasping geometric relations for objects. As defined in section 3.2.1, there 194

are N image features as well and their corresponding bounding boxes (or grid boxes) are 195

represented as Bi (i = 1, 2, ..., N). 196

We first calculate a vector Ω which represents geometric relationship between the m-th
region box Bm and the n-th region box Bn:

Ω(m, n) = (log(
|xm − xn|

wm
), log(

|ym − yn|
hm

), log(
wn

wm
), log(

hn

hm
)), (9)

where (xi, yi) stands for the center coordinates of the bounding box Bi. wi, hi denote width
and height for Bi. Then, Equation 9 is extended with the modification of Equation 8, which
is as follows:

Ω′(m, n) = (Ω(m, n), log(smn)), (10)

where Ω′ denotes the relative spatial encoding with directional information. Ω′(m, n) is
embedded in a high-dimensional embedding and then mapped to a scalar:

Ω′(m, n) = ReLU(Emb(Ω′)WG), (11)

where Emb(.) introduced in [6] calculates a high-dimensional embedding and WG is a 197

learned matrix. 198
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For grids, the i-th grid box Bi’s center coordinates can also be represented as (xi, yi) 199

and its width and height are denoted as wi, hi. 200

3.2.3. Absolute Positional Encoding 201

The absolute positional information determines the unique coordinate positions for 202

each region box and grid identified in an image. 203

Given N region features whose bounding boxes are denoted as B1, B2, ..., Bi, ..., BN . For
region boxes, the absolute position of the bounding box Bi is represented as (xmin, ymin, xmax, ymax),
where (xmin, ymin) is the top-left corner of the box Bi and (xmax, ymax) denotes the bottom-
right corner. Then, the absolute positional encoding for regions (we abbreviate it to RAPE)
is calculated as:

RAPE = BiWemb, (12)

where Wemb is an embedding matrix. 204

However, the absolute positional encoding for grids (we abbreviate it to GAPE) is
introduced as a vector concatenating two 1-D embeddings:

GAPE = [PEr; PEc], (13)

where r, c denote the row index and column index of the grid in the feature map. Positional
encoding PEr and PEc refer to:

PE(pos, 2i) = sin(pos/100002i/(dmodel /2)),

PE(pos, 2i + 1) = cos(pos/100002i/(dmodel /2)),
(14)

where pos denotes the row index or the column index of a grid box, and i denotes the 205

dimension of a grid. For example, there is a grid box whose row index and column index are 206

3 and 5, and we first calculate PEr = PE3 over its dimension (i ranges from 0 to dmodel/2). 207

Then we compute PEc = PE5 over its dimension, where i ranges from 0 to (dmodel/2)− 1. 208

Finally, [PEr; PEc] = [PE3; PE5] is represented as the absolute positional encoding for this 209

grid box. Moreover, PEr, PEc ∈ Rdmodel /2. 210

3.3. Modified Multi-head Attention 211

Despite feeding to encoder in one manner, we apply an encoder feeding both region
features and grid features separately. Notice that the Multi-Head Self-Attention in our FT
is modified with our devised relative spatial encoding and absolute positional encoding
illustrated in 3.2.2, 3.2.3. The similarity score E in Equation 2 is modified to E′ as follows:

E′ =
(Q + APEq)(K + APEk)

T
√

dk
+ log(Ω′(m, n)), (15)

where APEq represents the absolute positional encoding of queries and APEk denotes
the absolute positional encoding of keys. Overall, the modified multi-head attention is
calculated as follows:

Modi f ied multi−head(Q, K, V) = Concat(head1, ..., headh)W
O, (16)

where

headi = attention(Q, K, V , APEq, APEk, Ω′)

= so f tmax(E′)V

= so f tmax(
(Q + APEq)(K + APEk)

T
√

dk
+ log(Ω′(m, n)))V .

(17)

And attention(.) in Equation 17 denotes the modified self-attention. 212
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3.4. Fusion Attention 213

The intermediate representations of both visual features from the encoder are fed to 214

decoder for fusing multiple types of information containing two types of visual informa- 215

tion with relative directional encoding and word representations. Previous approaches 216

typically perform attention over few modalities separately in encoder and then integrate 217

the individual attention representations before feeding to decoder, which fail to measure 218

intrinsic relations of various types of information. To overcome this deficiency, we apply a 219

Fusion Attention (FA) shown in Figure 3 concluding a Language Guidance Block (LGB) 220

which enables the word representations to guide each kind of visual information directly. 221

Figure 3. The illustration of Fusion Attention (FA). The Language Guidance Block (LGB) is devised to
enable the text information at to fuse with each of the visual representations directly and respectively.
Then the output of LGB can be regarded as the previous fusion attention with single visual modality
which can affect the target visual modality.

We denote the processed region features from encoder as R and the number of them 222

are represented as nr. Further, the processed grid features from encoder are identified 223

as G and the number of them are denoted as ng. Subsequently, region representations 224

R1, R2, ..., Rnr and grid representations G1, G2, ..., Gng are fed to decoder. 225

Here we start from LGB which enables the output of normal multi-head attention at
from decoder (calculated by Equation 4, where Q, K, V refer to language information here)
to guide one of the injected visual representations (region or grid) from the encoder. This
manner can be mimicked as the multi-head attention mechanism in Equation 4 :

lt
(r) = multi−head(at, R, R), (18)

where R is considered as the preliminary injected region modality and lt
(r) denotes the 226

generation of LGB for regions. 227

Furthermore, we exploit the fusion region guidance lt
(r) to attend the target modality

(grid or region) to generate the final fusion representation for visual features:

Gt = multi−head(lt
(r), G, G), (19)

where G is considered as the target grid modality and Gt denotes the final output of FA 228

for the target grid modality affected by the preliminary region modality. In addition, grid 229

features injected as preliminary modality are processed the same way as above and the 230

final output of FA for region modality is represented as Rt. 231
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3.5. Fusion Gate Operation 232

To further integrate the fusion representation Gt (in Equation 19) under the guidance 233

of region modality and the Rt (in 3.4) under the guidance of grid modality, we employ the 234

Fusion Gate Operation (FGO) to retain truly meaningful information in memory cells, to 235

discard invalid information, and then to remember newly emerging states. Therefore, this 236

property is commonly used in neural networks, like LSTM [15], GRU [3], etc., and it can 237

address the long-term dependencies and gradient explosion (or gradient vanishing). 238

Figure 4. Framework of the Fusion Gate Operation (FGO). FGO is applied to further fuse the output
fusion information from Fusion Attentiion, and the contextual information Ft is finally generated.

We first calculate a fusion gate ft to fuse the output of normal Multi-Head Self-
Attention at (also calculated by Equation 4, here Q, K, V refer to the word representations)
with the output of LGB for regions and grids:

ft = sigmoid(Wf · [at, lt
(r), lt

(g)]), (20)

where ft ∈ Rdmodel×1 and Wf ∈ Rdmodel×3dmodel . 239

Then, a dual-way gate is applied to control the bilateral pathway, which is calculated
as follows:

Ft = f (Rt)⊙ ft + f (Gt)⊙ (1 − ft), (21)

where ft controls one output flow of FA for the target region modality and (1 − ft) controls 240

the other output flow of FA. In addition, ⊙ refers to hadamard product, f (.) refers to the 241

identity function and Ft denotes the final output of FGO. Finally, Ft ∈ Rdmodel×1 will be fed 242

to the next FFN sub-layer in decoder. 243

4. Experiments 244

In this section, we assess the validity of FT by comparing to the state-of-the-art models 245

on evaluation metrics. We also adopt extensive experiments to respectively demonstrate the 246

effectiveness of fusing two kinds of visual features and integrating directional information. 247

4.1. Experimental Settings 248

4.1.1. Datasets 249

We utilize the typical MS-COCO 2014 dataset [29] to evaluate the performance of our 250

proposed method. MS-COCO dataset contains 123,287 images annotated with 5 different 251

ground truth captions for each. In this paper, the extensively available Karpathy split [30] 252

is leveraged for offline evaluation, where 113,287 images are used for training, 5,000 images 253

for validation and the remaining 5,000 for training. We follow standard practice and only 254

perform minimal text pre-processing [4], which converts all sentences to lower case and 255

tokenizes on white space. 256
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4.1.2. Evaluation Metrics 257

To evaluate the quality of image captions with the Fusion Transformer, a set of standard 258

evaluation metrics are widely employed, including BLEU [31], METEOR [32], ROUGE 259

[33] and CIDEr [34]. BLEU and ROUGE are based on N-gram matching. BLEU mainly 260

measures the accuracy but cannot evaluate the completeness of the generated sentences. 261

ROUGE calculates the co-occurrence probability of N-gram in both reference descriptions 262

and generated descriptions. 263

4.1.3. Implementation details 264

In our implementation, we utilize the pre-trained Faster R-CNN provided by [13] to 265

extract region features and grid features. Jiang et al. [13] build a detector by employing 266

the dilated C5 backbone and 1 × 1 RoIPool followed by two FC layers. It modifies the 267

original feature extractor by removing the dilated C5 layer and applies a conventional 268

ResNet [12] C5 layer to extract grid features. For region features, the same model is utilized 269

for extracting region representations after the first FC layer. 270

We adapt ResNeXt-101 as the backbone network of visual representations. We average- 271

pool the grid features to 7 × 7 grid size and extract 2048-d region features by Faster R-CNN. 272

Subsequently, we set dmodel to 512. Different from the standard Transformer framework, we 273

set the numbers of both encoder and decoder to 3 instead of 6. The number of multi-head 274

is 8. In the cross-entropy pre-training stage, our implementation details follow [16]. In 275

reinforcement learning stage, we optimize our model with CIDEr reward with the learning 276

rate of 5 × 10−6 and the batch size is set to 100. Furthermore, Adam optimizer is used in 277

both cross-entropy pre-training and reinforcement learning stage. The beam size is set to 5. 278

And the value of d is set to 1 in the relative directional encoding part. 279

Table 1. Performance comparisons on the MS-COCO Karpathy offline test split. Notice that all values
are reported as percentage (%).

Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr

SCST [36] - 34.2 26.7 57.7 114.0
Up-Down [4] 79.8 36.3 27.2 56.9 120.1
HAN [37] 80.9 37.6 27.8 58.1 121.7
GCN-LSTM [26] 80.5 38.2 28.5 58.5 128.3
SGAE [38] 80.8 38.4 28.4 58.6 127.8
ORT [8] 80.5 38.6 28.7 58.4 127.8
SRT [39] 80.3 38.5 28.7 58.4 129.1
AoA [40] 80.2 38.9 29.2 58.8 129.8
HIP [41] - 39.1 28.9 59.2 130.6
M2 [19] 80.8 39.1 29.2 58.6 131.2
X-Transformer [42] 80.9 39.7 29.5 59.1 132.8
DRT [18] 81.7 40.4 29.5 59.3 133.2
ETA [17] 81.5 39.9 28.9 59.0 127.6
RSTNet [14] 81.1 39.3 29.4 58.5 133.3

region + grid (Ours) 81.5 39.9 29.6 59.0 133.4

segmentation + grid (Improvement) 81.9 40.0 29.6 59.4 134.7

4.2. Quantitative Analysis 280

4.2.1. Comparison with State-of-the-Art Models 281

Table 1 indicates the performance of the state-of-the-art models and Fusion Trans- 282

former on the offline test split. Specifically, we compare with the following models: SCST 283

[36], Up-Down [4], HAN [37], GCN-LSTM [26], SGAE [38], ORT [8], SRT [39], AoA [40], 284

HIP [41], M2 [19], X-Transformer [42], DRT [18] and ETA [17]. Especially, Up-Down is the 285

first to introduce region features into image captioning. SGAE introduces scene graphs. 286

ORT pioneers the fusion of relative positional information between objects. M2 designs a 287
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mesh-like structure to exploit both low-level and high-level contributions from encoder. 288

X-Transformer proposes the X-Linear Attention Networks (X-LAN) that novelly integrates 289

X-Linear attention block(s) into image encoder and sentence decoder of image captioning 290

model to leverage higher order intra- and inter-modal interactions [42]. DRT proposes the 291

direction matrix which consists of relative directional information between objects. And 292

ETA utilizes both region and grid features as input without considering absolute positional 293

information and relative directional information. However, our proposed FT model not 294

only utilizes two kinds of visual features but also fuses additional relative directional 295

encoding. 296

CIDEr is specially utilized for evaluating the quality of generated captions while BLEU 297

and ROUGE are commonly used for text translation. Thus, CIDEr is regarded as the most 298

representative metric in image captioning. As shown in Table 1, our Fusion Transformer 299

model surpasses all other approaches in terms of METEOR and CIDEr. It also achieves 300

comparable scores in BLEU and ROUGE compared to the ETA model. Overall, our method 301

outperforms the competitor ETA in all metrics. Focusing on the BLEU and ROUGE metrics, 302

our FT performs slightly worse than DRT. 303

Notice that the CIDEr score of our Fusion Transformer reaches 133.4%, which advances 304

ETA by 5.8%, DRT by 0.2% and RSTNet by 0.1%. On the one hand, the significant boost of 305

performance compared to ETA demonstrates the advantages of creatively fusing the vital 306

relative directional encoding with general relative positional encoding. On the other hand, 307

the improvement compared to DRT also substantiates the complementary of two kinds of 308

visual features and the importance of positional relations. 309

4.2.2. Ablation Study 310

We conduct mainly two ablation studies to quantify the significant designs in our 311

Fusion Transformer. The first study is designed to evaluate the importance of feeding two 312

kinds of visual features. The other one is proposed to assess the effectiveness of fusing 313

additional relative directional encoding information. 314

Table 2. Performance comparison of different feature settings. First three lines of this table are based
on vanilla Transformer.

Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr

Grid (G) 81.2 39.0 29.0 58.6 131.2
Region (R) 80.1 39.0 28.9 58.6 130.1
G + R 80.9 38.9 29.2 58.6 131.6

Ours (G + R) 81.5 39.9 29.6 59.0 133.4

As shown in Table 2, we conduct several experiments on our features utilizing the 315

vanilla Transformer. For standard Transformer model exploiting only one kind of visual 316

feature (region or grid), the result of fusing only grid features consistently exhibits better 317

performance than the one fusing only region features. In sum, the CIDEr score of feeding 318

grid features in Transformer reaches 131.2%, which advances the one feeding region 319

features by 1.1%. This indicates the better performance and the worthy effect of grid 320

features for standard Transformer. Further, compared to the results of every single feature, 321

the concatenation of both region and grid features comprehensively achieves better score 322

especially in CIDEr. Moreover, our Fusion Transformer with both visual features reaches 323

obviously higher score in CIDEr which refers to 133.4%. 324
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Table 3. Performance with / without relative directional information fused into modified Self-
Attention, where dir means directional information.

Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr

G + R 80.9 38.9 29.2 58.6 131.6
Ours (w/o dir) 81.4 39.8 29.5 59.1 132.9

Ours 81.5 39.9 29.6 59.0 133.4

For the relative directional encoding, we also conduct several experiments in Table 325

3 to demonstrate the effectiveness of our modified multi-head self-attention integrating 326

relative directional encoding with conventional positional encoding. As shown in Table 327

3, three alternatives are considered : 1. vanilla Transformer using both region and grid 328

features as input to encoder without relative directional encoding; 2. Fusion Transformer 329

without fusing relative directional encoding; 3. Fusion Transformer with relative directional 330

information. 331

Compared to our Fusion Transformer without fusing relative directional encoding, 332

the whole Fusion Transformer model obviously improves the quality of generated captions 333

which boosts the CIDEr score from 132.9% to 133.4% and performs better in all metrics. 334

This shows the significance of relative directional encoding fused to attention mechanism. 335

Above all, the highlight of this paper contains double visual features input (region 336

and grid features) and modified self-attention with relative directional encoding. All above 337

improve the comprehensive performance of our Fusion Transformer model. 338

Figure 5. Examples of image captioning results by vanilla Transformer and our proposed FT, coupled
with ground truth sentences and the corresponding CIDEr scores. The underlined words or phrases
show the detailed information grasped from raw images.

4.3. Case Study 339

To validate the benefits of our proposed Fusion Transformer, we conduct qualitative 340

analysis with visualization examples over the image / caption pairs which are shown in 341

Figure 5. It illustrates few image captions by vanilla Transformer and our method. 342

As indicated by these examples, our Fusion Transformer can grasp more detailed 343

and contextual information to generate more accurate captions than standard Transformer, 344

which attributes to the complementary of region and grid features. For example, in the first 345

example of Figure 5, our model can identify the real entire number of horses even though 346

there is another horse standing far away from the most visualized horse in the center of the 347

image. And for the second example in Figure 5, "pink" refers to the fine-grained color which 348

can be difficult to identify for Transformer, while ours enable to deal with this detailed 349
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problem. Overall, our method can generate more fine-grained information contained in the 350

entire image thanks to the fusion of two kinds of visual information. 351

With more reasonable directional information, our method performs better than base- 352

line Transformer, which can measure spatial information, e.g., relative direction utilizing 353

more accurate orientation prepositions. As illustrated in Figure 6, we can see that our 354

novel modified self-attention fusing positional encoding with relative directional encoding 355

proposed in this paper assists our model to enhance the orientation perception capturing 356

the representative spatial relationship between objects which contains "on", "under", "in 357

front of", "behind", "through", "on the back of", "over", "next to", etc. 358

Figure 6. Performances of our FT model fused with relative directional encoding. As shown in this
figure, the bold phrases or words represent the improvement of our model in directional relations’
capturing.

For example, in the last image of Figure 6, the relative directional information can 359

guide the model to generate "A cat sitting on a desk next to a laptop computer" instead of "A 360

cat sitting next to a desk on a laptop computer" or other generations. Compared to ours, the 361

vanilla Transformer regards the region features as a bag of tokens. It exploits the multi-head 362

attention to grasp the appearance relations between objects. However, the vanilla Trans- 363

former ignores the spatial information like relative and absolute positional information, 364

especially for the relative directional information. Hence, the standard Transformer has 365

less sensitive orientation awareness than our Fusion Transformer. 366

5. Conclusions 367

In this paper, we propose a novel Fusion Transformer (FT). It creatively fuse two visual 368

features and additional directional encoding with text information, while other methods 369

fuse at most three of the above four types of information. First, we apply an encoder to 370

grasp fine-grained contextual information of images by exploiting the complementary 371

advantages of region and grid representations. Meanwhile a novel modified Multi-head 372

Self-Attention is devised to explore broader spatial information containing positional 373

information and relative directional information between objects. This modified attention 374

enables the model to achieve better orientation perception. Fusion Attention (FA) with 375

a Language Guidance Block (LGB) is applied to enable the word features to guide each 376

kind of visual information directly. This makes the previous fusion attention with single 377

visual information affect the target visual information. Further, Fusion Gate Operation 378

(FGO) module is employed to do further integration. Experiment results demonstrate the 379

superiority of our approach reaching 133.4% in CIDEr on offline test, which outperforms 380

all other compared approaches. The Extensive ablation studies prove the significance of 381

relative direction information. And the effect of inputting both region and grid features is 382

also demonstrated in extensive experiments. 383
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